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Abstraet We find all (four) first integrals for huodimnsional Ermakov systems, 

Athome (1991) showed that the structure of generalized Ermakov systems introduced by 
Ray and Reid (1979), namely 

1 
x + &t)X = 7 f (Y/X) ( 1 4  

I 2 
Y + w (t)y = - g ( y / x )  

Y3 
is essentially that of an autonomous Hamiltonian system. He was presumably motivated by 
the fact that the original Ermakov system (Ermakov 1880), comprising the time-dependent 
harmonic oscillator 

(W 

(2b) 

x + oZ(t)x = 0 

j ;  + w 2 ( t ) y  = 1lY3 

and the Ermakov-Pinney equation (Ermakov 1880, Pinney 1950) 

is a Hamiltonian. However, in general, Ermakov systems are not Hamiltonian. We look at 
definitely non-Hamiltonian Ermakov systems of the form 

1 
r3 
1 

r3 

i - reZ = - f ( e ,  r2e)  ( 3 4  

(3b) re + z i6 = -g(B, r 2 i )  

(the presence of the r28 makes the system non-Hamiltonian) and show the existence of an 
invariant of Ermakov-type (Ermakov 1880). (The change to plane polars is suggested by 
the fact that the Ermakov invariant is of angular-momentum type. We carefully distinguish 
between Ermakov invariants and Lewis invariants (Lewis 1967, 1968) despite a tendency 
in the literature to conflate them. Whereas an Ermakov invariant has the nature of a 
generalization of angular momentum, a Lewis invariant has the nature of an energy integral.) 

Generalized Ermakov systems are characterized by their Lie algebra, st (2,  R ) ,  (Leach 
1991). A well known example of an Ermakov system in three dimensions is the classical 
magnetic monopole (Govinder et al 1993). This example exhibits invariance under, in 
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addition to se(2, R),  the generators of the Lie algebra so(3). In general, Ermakov systems in 
three dimensions are non-Hamiltonian. For OUT purposes we concentrate on two dimensions 
as the increase in mathematical complexity for three dimensions is not compensated by 
further insight into the problem. 

We utilize the group-theoretic approach for finding first integrals. This requires the 
knowledge of the symmetries of (3) which were given by Leach (1991) as 

a 
at GI = - 

a a  
GZ=2t-+r- 

at ar 
28 a 

at ar 
GB=t -+tr-.  

The first extension of GI, namely 

gives the functional form of its first integrals as 

I = [(U, Ul, Wl, x) 

u = e  v l = r  

(6) 
where 

w l = r i  x = r B .  2 ’  

(We use these characteristics rather than r, 0, i. and 6 to maintain as close a resemblance as 
possible with the characteristics of Gz and G3.) The requirement that 

i = o  
results in a partial differential equation with associated Lagrange’s system 

Taking the first and fourth terms gives us a first integral of Ermakov-type 

i = M ( u , x ) .  (8) 
(See also Govinder and Leach 1993.) The first and third terms of (7) give the Riccati 
equation 

where N is obtained by inverting (8) to give 

x = N ( I ,  U). (10) 

Ji = P I ( w I , u , I )  (11) 

We can, in principle, integrate (9) to obtain another first integral 

say. The first two terms of (7) can be easily integrated to give 

where Ql is obtained by inverting (11) to give 

W I = Q ~ ( J ~ , U , O .  
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Using the first extension of Gz we obtain the functional form of its first integrals as 

Y=Y(u,u,,w,,x) (14) 

U = %  u2 =rt-’” w1 = r f  x = rZ6. 

where 

Proceeding in a similar manner to before we again obtain f and J I  (in the latter case the 
Riccati equation obtained is identical to (9)). The only new first integral is 

GY’ requires its first integrals to have the functional form 

ri =%(U, u3, w2,x) 

u = 9  u a = r t -  I w2 =ri .  -r2t-‘  x = r  B .  

where 
2 .  

As expected we again obtain f. The other two first integrals are 

J2 = P2(wzr U, I) 
and 

Here J2 is the solution of the Riccati equation 

We have obtained six first integrals for the system (3). As we know that only four 
independent first integrals exist, we have to relate two to the other four. We h o w  that 

y2- I - % i t  2 2 ‘ (20) 

We can thus solve (12) in terms of U, and substitute for V I ,  Ql = w1 and Qz = wz in (18) 
to obtain 

1 
Ki 

K3=-. 

We also know that 

w2 = r i  

(22) 2 =w1-u2. 

Substituting (22) into (19) results in the Bernoulli equation (Ince 1956) 

which, upon substituting 

u;=1/y u = x  

becomes the linear first-order equation 
2Wl 1 y’+ -y - - = o .  
N N  
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We can solve (24) to obtain 
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Y =  A +  -exp 2 -du du exp -2 -du ( 11: (Se,' ) ) ( s",' 
and, inverting and substituting for y .  W I  and WZ, we obtain 

which is just Kz. Thus (19) gives us no new information about the system (3). 
We therefore have that (3) has the four independent first integrals 

i = M ( U , X )  

Ji = PI (WI, U, I) 
1 

K1 = - exp (2 /- !$du) 
U: 

We note that, if we had let the arbieary functions f and g in (3) depend on 0 only, then 
the system (3) would be Hamiltonian provided 

f ( e )  = -2 g(e)de (28) 

(Leach 1991). However, if we relax the condition (28), we still obtain the four first integrals 
(27) with M ( u , x )  in (27a) explicitly given by 

(29) 

s 
M = ;(.'e)' - S g w e .  

This is just the Ermakov invariant. 
We finally remark that Cervero and Lejarreta (1991) have found invariants for Hamilto- 

nian Ermakov systems. Their development is somewhat complicated. We have adopted an 
approach similar to that used above to find all (four) first integrals for Hamiltonian Ermakov 
systems (Govinder and Leach 1994). The parallels between the J s  and Ks in this paper 
and the Ks and J s  in that paper are rather intriguing and bear further investigation. 
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